Cart (Loading....) | Create Account
Close category search window
 

Adsorption-induced inactivation of heavy meromyosin on polymer surfaces imposes effective drag force on sliding actin filaments in vitro

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hanson, K.L. ; Fac. of Eng. & Ind. Sci., Swinburne Univ. of Technol., Hawthorn, Vic. ; Solana, G. ; Vaidyanathan, V. ; Nicolau, D.V.

Actin and myosin are of interest as potential force-generating elements in engineered nanodevices. Such applications require surface coatings which are both biocompatible and amenable to nanolithographic processing, but the manner in which surfaces modulate motor protein function has not been rigorously studied. Here we examine motor protein surface density and bioactivity on a variety of polymer surfaces, and compare the results to in vitro actomyosin motility characteristics. Filament velocities were found to be controlled by the proportion, rather than density, of active heavy meromyosin (HMM), consistent with the imposition of an effective drag force by inactivated HMM due to weak actin-binding interactions. Interpretation of the results with respect to previous models suggests that the inactive HMM fraction has no force-generating ability, and that the effective drag imposed on polystyrene is lower than that on methacrylate polymers and nitrocellulose, consistent with a higher degree of protein denaturation on aromatic surface structures

Published in:

Microtechnologies in Medicine and Biology, 2006 International Conference on

Date of Conference:

9-12 May 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.