By Topic

Learning Objects Reusability and Retrieval through Ontological Sharing: A Hybrid Unsupervised Data Mining Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ching-Chieh Kiu ; Multimedia University, Malaysia ; Chien-Sing Lee

Ontologies add semantics and context to learning objects (LOs), enabling LO sharing and reuse in a contextual learning environment and providing better navigation and retrieval of LOs. However, the effectiveness of LO reuse from LO repositories is compromised due to the use of different ontological schemes in each LO repository. This paper presents an algorithmic framework for ontology mapping and merging, OntoDNA, which employs hybrid unsupervised data mining techniques to resolve the semantic and structural differences between ontologies to subsequently create a merged ontology to facilitate LO reuse and retrieval from the Web or from different LO repositories such as ARIADNE, MERLOT, CAREO or Educause. Experimental results on several real ontologies and comparisons with other ontology mapping and merging tools demonstrate the viability of the OntoDNA in terms of precision, recall and f-measure to interoperate LOs in the LO repositories.

Published in:

Seventh IEEE International Conference on Advanced Learning Technologies (ICALT 2007)

Date of Conference:

18-20 July 2007