By Topic

An Ontological Approach for Semantic Learning Objects Interoperability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper presents a semantic-aware classification algorithm that can leverage the interoperability among semantically heterogeneous learning object repositories using different ontologies. The proposed algorithm is to map sharable learning objects, using meanings instead of just keyword matching, from heterogeneous repositories into a local knowledge base (an e-learning ontology). Significance of this research lies in the semantic inferring rules for learning objects classification as well as the full automatic processing and self-optimizing capability. This approach is sufficiently generic to be embedded into other e-learning platforms for semantic interoperability among learning object repositories. Focused on digital learning material and contrasted to other traditional classification technologies, the proposed approach has experimentally demonstrated significantly improvement in performance.

Published in:

Advanced Learning Technologies, 2007. ICALT 2007. Seventh IEEE International Conference on

Date of Conference:

18-20 July 2007