Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Time Series Forecasting for Dynamic Environments: The DyFor Genetic Program Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wagner, N. ; Augusta State Univ., Augusta ; Michalewicz, Z. ; Khouja, M. ; McGregor, R.R.

Several studies have applied genetic programming (GP) to the task of forecasting with favorable results. However, these studies, like those applying other techniques, have assumed a static environment, making them unsuitable for many real-world time series which are generated by varying processes. This study investigates the development of a new ldquodynamicrdquo GP model that is specifically tailored for forecasting in nonstatic environments. This dynamic forecasting genetic program (DyFor GP) model incorporates features that allow it to adapt to changing environments automatically as well as retain knowledge learned from previously encountered environments. The DyFor GP model is tested for forecasting efficacy on both simulated and actual time series including the U.S. Gross Domestic Product and Consumer Price Index Inflation. Results show that the performance of the DyFor GP model improves upon that of benchmark models for all experiments. These findings highlight the DyFor GP's potential as an adaptive, nonlinear model for real-world forecasting applications and suggest further investigations.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:11 ,  Issue: 4 )