By Topic

Circuit-Switched Coherence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jerger, N.E. ; Univ. of Wisconsin-Madison, Madison ; Lipasti, M. ; Li-Shiuan Peh

Circuit-switched networks can significantly lower the communication latency between processor cores, when compared to packet-switched networks, since once circuits are set up, communication latency approaches pure interconnect delay. However, if circuits are not frequently reused, the long set up time and poorer interconnect utilization can hurt overall performance. To combat this problem, we propose a hybrid router design which intermingles packet-switched flits with circuit-switched flits. Additionally, we co-design a prediction-based coherence protocol that leverages the existence of circuits to optimize pair-wise sharing between cores. The protocol allows pair-wise sharers to communicate directly with each other via circuits and drives up circuit reuse. Circuit-switched coherence provides overall system performance improvements of up to 17% with an average improvement of 10% and reduces network latency by up to 30%.

Published in:

Computer Architecture Letters  (Volume:6 ,  Issue: 1 )