By Topic

Accurate and efficient stochastic reliability analysis of composite services using their compact Markov reward model representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sato, N. ; IBM Res., New York ; Trivedi, K.S.

Stochastic reliability analysis of composite services is challenging, primarily since it needs us to carefully balance accuracy of analysis and its computational complexity: Given stochastic models of service components, we often combine them and define a large complex model to accurately reflect the effects of failures of particular components on the reliability of the entire service. In this paper, we propose a new technique, based on the Markov reward model (MRM) foundation, to substantially reduce the computational complexity without losing accuracy. It evaluates, prior to analysis, the effects of the possible failures and represents them as scalar reward values attached to a single compact Markov model. Thus we can replace the component models with a compact model that retains the complete information for accurate analysis. We demonstrate the effectiveness of this technique for several cases, where failures are correlated with each other in different ways.

Published in:

Services Computing, 2007. SCC 2007. IEEE International Conference on

Date of Conference:

9-13 July 2007