By Topic

On-Resistance Modulation of High Voltage GaN HEMT on Sapphire Substrate Under High Applied Voltage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

The 620-V/1.4-A GaN high-electron mobility transistors on sapphire substrate were fabricated and the ON-resistance modulations caused by current collapse phenomena were measured under high applied voltage. Since the fabricated devices had insulating substrates, no field-plate (FP) effect was expected and the ON-resistance increases of these devices were larger than those on an n-SiC substrate even with the same source-FP structure. The dual-FP structure, which was a combination of gate FP and source FP, was effective in suppressing the ON -resistance increase due to minimization of the gate-edge electric field concentration. The ON-resistance after the applied voltage of 250 V decreased by twice that at low drain voltage by the dual-FP structure. Gallium nitride (GaN), high-electron mobility transistor (HEMT), high voltage, power semiconductor device.

Published in:

Electron Device Letters, IEEE  (Volume:28 ,  Issue: 8 )