Cart (Loading....) | Create Account
Close category search window
 

Simulation of Graphene Nanoribbon Field-Effect Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fiori, G. ; Universita di Pisa, Pisa ; Iannaccone, G.

We present an atomistic 3-D simulation of graphene nanoribbon field-effect transistors (GNR-FETs), based on the self consistent solution of the 3-D Poisson and Schrodinger equations with open boundary conditions within the nonequilibrium Green's function formalism and a tight-binding Hamiltonian. With respect to carbon nanotube FETs, GNR-FETs exhibit comparable performance, reduced sensitivity to the variability of channel chirality, and similar leakage problems due to band-to-band tunneling. Acceptable transistor performance requires prohibitive effective nanoribbon width of 1-2 nm and atomistic precision that could in principle be obtained with periodic etch patterns or stress patterns.

Published in:

Electron Device Letters, IEEE  (Volume:28 ,  Issue: 8 )

Date of Publication:

Aug. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.