By Topic

Self-Heating Effect in Intrinsic Tunneling Spectroscopy of {\rm HgBr}_{2} Intercalated {\rm Bi}_{2.1}{\rm Sr}_{1.4}{\rm Ca}_{1.5}{\rm Cu}_{2}{\rm O}_{8+\delta } Single Crystals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

We report tunneling results in intrinsic Josephson junction (IJJ) stacks fabricated in the form of square micromesas on HgBr2 intercalated Bi2.1Sr1.4Ca1.5Cu2O8+delta (Bi2212) single crystals using photolithography and Ar ion milling techniques. Self-heating is the most common problem encountered in interlayer tunneling and it is likely to reduce the reliability of IJJ data. Although intercalation reduces heating a hundredfold, it still needs to be minimized substantially in order to approach the authentic superconducting energy gap observed by tunneling using more conventional junctions. We report tunneling characteristics of two mesas with the same height but different sizes (5 times 5 mum2 and 10 times 10 mum2) to show that heating effects are strongly related to IJJ stack size. For the smaller mesa, we observed an energy gap close to that seen in single SIN (S: superconductor, I: insulator, N: normal metal) and SIS break junctions as well as the dip and hump structures at high bias. The subgap data of 5 times 5 mum2 mesa were successfully fit with a momentum averaged d-wave model using convenient parameters. Thus our data is consistent with the predominant pairing symmetry suggested by point contact tunneling, break junction, scanning tunneling microscopy/spectroscopy and angle resolved photoemission measurements in Bi2Sr2CaCu2O8+delta.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:17 ,  Issue: 2 )