By Topic

A High-Resolution Frequency Estimation Method for Three-Phase Induction Machine Fault Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kia, S.H. ; Picardie "Jules Verne" Univ., Amiens ; Henao, H. ; Capolino, G.-A.

Fault detection in alternating-current electrical machines that is based on frequency analysis of stator current has been the interest of many researchers. Several frequency estimation techniques have been developed and are used to help the induction machine fault detection and diagnosis. This paper presents a technique to improve the fault detection technique by using the classical multiple signal classification (MUSIC) method. This method is a powerful tool that extracts meaningful frequencies from the signal, and it has been widely used in different areas, which include electrical machines. In the proposed application, the fault sensitive frequencies have to be found in the stator current signature. They are numerous in a given frequency range, and they are affected by the signal-to-noise ratio. Then, the MUSIC method takes a long computation time to find many frequencies by increasing the dimension of the autocorrelation matrix. To solve this problem, an algorithm that is based on zooming in a specific frequency range is proposed with MUSIC in order to improve the performances of frequency extraction. Moreover, the method is integrated as a part of MUSIC to estimate the frequency signal dimension order based on classification of autocorrelation matrix eigenvalues. The proposed algorithm has been applied to detect a rotor broken bar fault in a three-phase squirrel-cage induction machine under different loads and in steady-state condition.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:54 ,  Issue: 4 )