Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Simplified Surface Preparation for GaAs Passivation Using Atomic Layer-Deposited High- κ Dielectrics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi Xuan ; Purdue Univ., West Lafayette ; Hung-Chun Lin ; Ye, P.D.

Atomic layer deposition (ALD) provides a unique opportunity to integrate high-quality gate dielectrics on III-V compound semiconductors. The physics and chemistry of a III-V compound semiconductor surface or interface are problems so complex that even after three decades research understanding is still limited. We report a simplified surface preparation process using ammonium hydroxide (NH4OH) to remove the native oxide and make the hydroxylated GaAs surface ready for ALD Al2O3 surface chemistry. The effectiveness of GaAs passivation with ALD is demonstrated with small hysteresis, 1%-2% frequency dispersion per decade at accumulation capacitance, and a mid-bandgap D it of 8 times1011 to 1times 1012 cm-2 ldr eV-1determined by the Terman method. The results from ammonium sulfide [(NH4)2S-,and hydrofluoric acid (HF)-, and hydrochloric acid (HCl)-treated surfaces and a surface with native oxide are also presented to compare with the results from the ammonium-hydroxide-treated surface. Fermi-level unpinning is also easily demonstrated on the ALD HfO2 and p-type GaAs interface.

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 8 )