Cart (Loading....) | Create Account
Close category search window
 

Semi-Analytical Modeling of Short-Channel Effects in Si and Ge Symmetrical Double-Gate MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tsormpatzoglou, A. ; Aristotle Univ. of Thessaloniki, Thessaloniki ; Dimitriadis, C.A. ; Clerc, R. ; Rafhay, Q.
more authors

A simple analytical expression of the 2-D potential distribution along the channel of silicon symmetrical double-gate (DG) MOSFETs in weak inversion is derived. The analytical solution of the potential distribution is compared with the numerical solution of the 2-D Poisson's equation in terms of the channel length L, the silicon thickness t Si, and the gate oxide thickness t OX. The obtained results show that the analytical solution describes, with good accuracy, the potential distribution along the channel at different positions from the gate interfaces for well-designed devices when the ratio of L/t Si is ges 2-3. Based on the 2-D extra potential induced in the silicon film due to short-channel effects (SCEs), a semi-analytical expression for the subthreshold drain current of short-channel devices is derived. From the obtained subthreshold characteristics, the extracted device parameters of the subthreshold slope, drain-induced barrier lowering, and threshold voltage are discussed. Application of the proposed model to devices with silicon replaced by germanium demonstrates that the germanium DG MOSFETs are more prone to SCEs.

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 8 )

Date of Publication:

Aug. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.