By Topic

Analysis and Implementation of a Novel Leading Zero Anticipation Algorithm for Floating-Point Arithmetic Units

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Leading zero anticipation with error correction is a widely adopted technique in the implementation of high-speed IEEE-754-compliant floating-point units (FPUs), which are critical for area and power in multimedia-oriented systems-on-chips. We investigated a novel LZA algorithm allowing us to remove error correction circuitry by reducing the error rate below a commonly accepted limit for image processing applications, which is not achieved by previous techniques. We embedded our technique into a complete FPU definitely obtaining both area saving and overall FPU latency reduction with respect to traditional designs.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:54 ,  Issue: 8 )