Cart (Loading....) | Create Account
Close category search window
 

Impulsive Synchronization of Chaotic Lur'e Systems by Linear Static Measurement Feedback: An LMI Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun Guo Lu ; Shanghai Jiaotong Univ., Shanghai ; Hill, D.J.

In this brief, we consider impulsive control for master-slave synchronization schemes that consist of identical chaotic Lur'e systems. Impulsive control laws are investigated which make use of linear static measurement feedback, instead of full state feedback. A less conservative sufficient condition than existing results for global asymptotic impulsive synchronization is presented, in which synchronization is proven for the error between the full state vectors. And then an linear matrix inequality (LMI)-based approach for designing linear static output feedback impulsive control laws to globally asymptotically synchronize Lur'e chaotic systems is derived. With the help of the LMI solvers, we can easily obtain the linear output feedback impulsive controller and the bound of the impulsive interval for global asymptotic synchronization. The method is illustrated on Chua's circuit.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:54 ,  Issue: 8 )

Date of Publication:

Aug. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.