By Topic

A 104-dB Dynamic Range Transimpedance-Based CMOS ASIC for Tuning Fork Microgyroscopes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ajit Sharma ; Georgia Inst. of Technol., Atlanta ; Mohammad Faisal Zaman ; Farrokh Ayazi

In this paper, the design, implementation and characterization of a continuous time transimpedance-based ASIC for the actuation and sensing of a high-Q MEMS tuning fork gyroscope (TFG) is presented. A T-network transimpedance amplifier (TIA) is used as the front-end for low-noise, sub-atto-Farad capacitive detection. The T-network TIA provides on-chip transimpedance gains of up to 25 MOmega, has a measured capacitive resolution of 0.02 aF/radicHz at 15 kHz, a wide dynamic range of 104 dB in a bandwidth of 10 Hz and consumes 400 muW of power. The CMOS interface ASIC uses this TIA as the front-end to sustain electromechanical oscillations in a MEMS TFG with motional impedance greater than 10 MOmega. The TFG interfaced with the ASIC yields a two-chip angular rate sensor with measured rate noise floor of 2.7deg/hr/radicHz, bias instability of 1deg/hr and rate sensitivity of 2 mV/deg/s. The IC is fabricated in a 0.6-mum standard CMOS process with an area of 2.25 mm2 and consumes 15 mW.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:42 ,  Issue: 8 )