By Topic

The Results of Installation and Preliminary Test of 22.9 kV, 50 MVA, 100 m Class HTS Power Cable System at KEPCO

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Sohn, S.H. ; Korea Electr. Power Res. Inst, Daejeon ; Lim, J.H. ; Yim, S.W. ; Hyun, O.-B.
more authors

As high temperature superconducting (HTS) power cables have some merits over conventional cables, several demonstration projects on the HTS cable system are presently under way around the world. Korea Electric Power Corporation (KEPCO) also initiated an HTS cable project in 2002 with the Korean government's support. A three phase 100 m HTS cable system with a capacity of 50 MVA has been installed at Gochang test yard, located in Chonnbuk province, Korea. The HTS cable system is composed of a 100 m-long cable, two terminations and a cooling system. The rated current is 1,250 Arms and the rated voltage is 22.9 kV considering compatibility with the conventional power distribution system in Korea. Main purposes of this project are to verify the performance of an HTS cable system and to evaluate the potential of the HTS cable system from the viewpoint of power utilities. The real grid application of the HTS cable system requires the demonstration of system reliability, accumulated operation experiences, and it has to meet the practical needs of the utilities. In such a meaning, this project provides various challenges for KEPCO, and the feedback will be delivered to cable manufacturers. This user initiative test will facilitate the introduction of HTS cable systems into a real grid network. The installation process of the HTS cable system and some results of the preliminary test were presented in this paper.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:17 ,  Issue: 2 )