By Topic

A Finite Element Model for Mechanical Analysis of LHC Main Dipole Magnet Coils

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

After years of studies and observations, the mechanical stability of the LHC main dipole magnets still remains an open issue. The robustness of these magnets has already been asserted and their reliability in operation is not far from being proven. However, anomalous mechanical behaviors sometimes observed are not yet completely understood. A finite element model, which has been recently developed at CERN, aims at providing an instrument for better explaining these anomalies. Cable modeling and contact between elements, friction and mechanical hysteresis are the key features of this model. The simulation of the hysteresis experienced by the coil during collaring, presented here, is the starting point for the representation of the whole life cycle of the dipole coil.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:17 ,  Issue: 2 )