By Topic

RSFQ Circuitry Using Intrinsic \pi -Phase Shifts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Ortlepp, T. ; RSFQ Design Group, Univ. of Technol. Ilmenau, Berlin, Germany ; Ariando ; Mielke, O. ; Verwijs, C.J.M.
more authors

The latching of temporary data is essential in the rapid single flux quantum (RSFQ) electronics family. Its pulse-driven nature requires two or more stable states in almost all cells. Storage loops must be designed to have exactly two stable states for binary data representation. In conventional RSFQ such loops are constructed to have two stable states, e.g. by using asymmetric bias currents. This bistability naturally occurs when phase-shifting elements are included in the circuitry, such as π-Josephson junctions or a π-phase shift associated with an unconventional (d-wave) order parameter symmetry. Both approaches can be treated completely analogously, giving the same results. We have demonstrated for the first time the correct operation of a logic circuit, a toggle-flip-flop, using rings with an intrinsic π-phase shift (π-rings) based on hybrid high-Tc to low-Tc Josephson junctions. Because of their natural bistability these π-rings improve the device symmetry, enhance operation margins and alleviate the need for bias current lines.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:17 ,  Issue: 2 )