By Topic

Thermal and Electrical Analysis of Coated Conductor Under AC Over-Current

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kwanwoo Nam ; Hyundai Heavy Ind. Co. Ltd., Ulsan ; Chanjoo Lee ; Dong Keun Park ; Tae Kuk Ko
more authors

In order to design a high temperature superconducting (HTS) winding for the fault current limiter (FCL), the resistance and the temperature of the winding should be calculated quantitatively under the over-current caused by fault condition. In this paper, a transient analysis is performed to estimate the resistance development and the temperature rise of coated conductor (CC) under AC over-current. A one-dimensional thermal conduction model with an electrical circuit model is developed for the solenoid coil configuration at 65 K cooling condition. All the composite materials except the buffer layer in CC are considered in the model. Two kinds of stabilizer materials (copper/stainless steel) are considered to investigate the current limitation of CC. The simulation results are compared with the experimental data of the commercial CC. The effect of Ag and solder layer on the simulation result are revealed for CC.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:17 ,  Issue: 2 )