By Topic

Parametric Design for Superconducting Synchronous Motor With 3D Equivalent Magnetic Circuit Network Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

This paper proposes an effective parametric design for high temperature superconducting (HTS) synchronous motors with 3D equivalent magnetic circuit network (EMCN) method. Proposed design process consists of 5 steps which are electric design, mechanical design, characteristic analysis for field and armature, and motor characteristic analysis. Especially, in order to predict the performance of HTS synchronous motors, the variation of output power characteristics according to the variation of back electromotive force (BEMF) and inductance is analysed in electric design. Reliability of proposed design process and developed program is verified through the comparison of the results of commercial program using 3D finite element analysis (FEA) method.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:17 ,  Issue: 2 )