Cart (Loading....) | Create Account
Close category search window

NbN Vacuum Bridge Bolometer Arrays With Room Temperature Readout Approaching Photon Noise Limited THz Imaging Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

We study the applicability of superconducting NbN vacuum bridge bolometer arrays with room temperature readout electronics to passive THz imaging applications. We show that sufficient bandwidth for video-rate mechanical scanning in terms of stability and noise can be reached by exploiting the divergences of the bolometer noise temperature and the differential impedance at the I-V curve minimum. Experimental electrical noise equivalent power is 9 fW/Hz1/2 . This would correspond to ~10 times the photon noise in a bandwidth of 0.5 THz and is comparable to the expected clutter in passive THz images due to atmospheric fluctuations.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:17 ,  Issue: 2 )

Date of Publication:

June 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.