By Topic

SQUID Probe Microscope Combined With Scanning Tunneling Microscope

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We have developed a high TC SQUID probe microscope combined with a scanning tunneling microscope for investigation of samples at room temperature in air. A high permeability probe needle was used as a magnetic flux guide to improve the spatial resolution. The probe with tip radius of less than 100 nm was prepared by microelectropolishing. The probe was also used as a scanning tunneling microscope tip. Topography of the sample surface could be measured by the scanning tunneling microscope with high spatial resolution. The SQUID probe microscope image could be observed while keeping the distance from the sample surface to the probe tip constant. We observed a topographic image and a magnetic image of Ni fine pattern and also a magnetically recorded hard disk.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:17 ,  Issue: 2 )