By Topic

Study of Planar MgB2/TiB2/MgB2 Josephson Junctions Using the Proximity Effect SNS Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ke Chen ; Pennsylvania Univ., University Park ; Cui, Y. ; Li, Qi ; Xi, X.X.

Planar MgB2/TiB2/MgB2 junctions were fabricated by locally removing MgB2 within a gap of les 50 nm on a bilayer film of MgB2/TiB2 on SiC substrate using focused ion beam (FIB). Junctions with gaps of different depths were studied. We found that when the gap is too shallow the junction shows a flux-flow behavior, while a too deep gap will result in a junction with no supercurrent. Only junctions with the right gap depth exhibit good resistively-shunted-junction (RSJ) like current-voltage characteristics and excellent ac Josephson effect. The junctions' behavior can be described by the proximity effect superconductor-normal metal-superconductor (SNS) model, suggesting that the Josephson coupling is through the proximity effect in the metallic TiB2 layer.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:17 ,  Issue: 2 )