Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Coreless HTS Synchronous Generator Operating at Liquid Nitrogen Temperatures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Al-Mosawi, M.K. ; Southampton Univ., Southampton ; Goddard, K. ; Beduz, C. ; Yang, Y.

In this paper we report on our new design of a liquid nitrogen/air cooled 100 KW synchronous generator with core-less rotor. This follows our successful completion of 100 KW generators with a 9 wt% Ni steel core operating at 77 K. In the new design, we demonstrate that a coreless rotor using commercial BSCCO tape is a realistic choice while maintaining the cooling at 57-77 K rather than 25-30 K and still achieving reasonable air-gap flux density. This is made possible by a combination of improved HTS wire technology and a careful optimization of HTS winding and flux diverters. The maximum flux density normal to the broad face of the tape is kept below 0.13 T, even when the air-gap density is raised to 0.5 T. The superconducting winding consists of 22 pancake coils with a total length of around 1250 meters of HTS tape. The required temperatures down to 57 K are achieved by a purpose-designed refrigeration system where liquid cryogen is circulated via a network of well insulated pipes and a stationery-rotating liquid coupling junction.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:17 ,  Issue: 2 )