Cart (Loading....) | Create Account
Close category search window

The Effect of Phase Cancellation on Estimates of Calcaneal Broadband Ultrasound Attenuation in Vivo

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wear, K.A. ; U.S. Food & Drug Admin., Rockville

Broadband ultrasonic attenuation (BUA) is a clinically-accepted measurement for prediction of osteoporotic fracture risk. Typical clinical BUA measurements are performed with phase-sensitive receivers and, therefore, can be affected by phase cancellation. In order to separate the effects of conventional attenuation (absorption plus scattering) From phase cancellation, BUA was measured on phantoms with acrylic wedge phase aberrators and on 73 women using both phase sensitive (PS) and phase insensitive (PI) reception. A clinical bone sonometer with a two-dimensional (2-D) receiver array was used. PI BUA measurements on phantoms with acrylic wedge phase aberrators were found to be far more resistant to phase cancellation than PS BUA measurements. In data from 73 women, means and standard deviations for BUA measurements were 81.4 plusmn21.4 dB/MHz (PS) and 67.2plusmn 9.7 dB/MHz (PI). The magnitude of the discrepancy between PS BUA and PI BUA tended to increase with bone mineral density (BMD).

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:54 ,  Issue: 7 )

Date of Publication:

July 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.