By Topic

Nonparametric Approaches for Estimating Driver Pose

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Paul Watta ; Univ. of Michigan-Dearborn, Dearborn ; Sridhar Lakshmanan ; Yulin Hou

To better understand driver behavior, the Federal Highway Administration and the National Highway Traffic Safety Administration have collected several thousands of hours of driver video. There is now an immediate need for devising automated procedures for analyzing the video. In this paper, we look at the problem of estimating driver pose given a video of the driver as he or she drives the vehicle. A complete system is proposed to perform feature extraction and classification of each frame. The system uses a Fisherface representation of video frames and a nearest neighbor and neural network classification scheme. Experimental results show that the system can achieve high accuracy and reliable performance.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:56 ,  Issue: 4 )