Cart (Loading....) | Create Account
Close category search window

Iterative Methods for Cancellation of Intercarrier Interference in OFDM Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Molisch, A.F. ; Mitsubishi Electr. Res. Lab., Cambridge ; Toeltsch, M.. ; Vermani, S..

We consider orthogonal frequency-division multiplexing systems with intercarrier interference (ICI) due to insufficient cyclic prefix and/or temporal variations. Intersymbol interference (ISI) and ICI lead to an error floor in conventional receivers. We suggest two techniques for the equalization of ICI. The first, called "operator-perturbation technique" is an iterative technique for the inversion of a linear system of equations. Alternatively, we show that serial or parallel interference cancellation can be used to drastically reduce the error floor. Simulations show that, depending on the SNR and the origin of the ICI, one of the schemes performs best. In all cases, our schemes lead to a drastic reduction of the bit error rate.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:56 ,  Issue: 4 )

Date of Publication:

July 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.