By Topic

Simplified Spatial Correlation Models for Clustered MIMO Channels With Different Array Configurations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

An approximate spatial correlation model for clustered multiple-input multiple-output (MIMO) channels is proposed in this paper. The two ingredients for the model are an approximation for uniform linear and circular arrays to avoid numerical integrals and a closed-form expression for the correlation coefficients that is derived for the Laplacian azimuth angle distribution. A new performance metric to compare parametric and nonparametric channel models is proposed and used to show that the proposed model is a good fit to the existing parametric models for low angle spreads (i.e., smaller than 10deg). A computational-complexity analysis shows that the proposed method is a numerically efficient way of generating the spatially correlated MIMO channels.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:56 ,  Issue: 4 )