By Topic

Characterization of a Completely User-Independent Algorithm for Carotid Artery Segmentation in 2-D Ultrasound Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

The analysis of the carotid artery wall is crucial for the diagnosis of serious cardiovascular pathologies or for the assessment of a subject's cardiovascular risk. Several algorithms have been proposed for the segmentation of ultrasound carotid artery images, but almost all require a certain degree of user interaction. We recently developed a completely user-independent algorithm for the segmentation of the common-carotid-artery wall; specifically, the algorithm traces the contour of the interfaces between the lumen and the intima layer and between the media and adventitia layers. In this paper, we show the characterization of the algorithm in terms of segmentation error. Moreover, we compare the output of the algorithm with the segmentations manually traced by four experts, using the percent statistics test and testing the automatically generated segmentation against the average human segmentations. We show that our algorithm's segmentation is not statistically different from that of a trained operator and that the segmentation error is lower than 1 pixel for both the lumen-intima interface and for the media-adventitia interface.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:56 ,  Issue: 4 )