By Topic

A General Class of Split-Radix FFT Algorithms for the Computation of the DFT of Length-2m

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, a general class of split-radix fast Fourier transform (FFT) algorithms for computing the length-2m DFT is proposed by introducing a new recursive approach coupled with an efficient method for combining the twiddle factors. This enables the development of higher split-radix FFT algorithms from lower split-radix FFT algorithms without any increase in the arithmetic complexity. Specifically, an arbitrary radix-2/2s FFT algorithm for any value of s, 4les sles m, is proposed and its arithmetic complexity analyzed. It is shown that the number of arithmetic operations (multiplications plus additions) required by the proposed radix-2/2s FFT algorithm is independent of s and is (2m-3)2m+1+8 regardless of whether a complex multiplication is carried out using four multiplications and two additions or three multiplications and three additions. This paper thus provides a variety of choices and ways for computing the length-2m DFT with the same arithmetic complexity.

Published in:

IEEE Transactions on Signal Processing  (Volume:55 ,  Issue: 8 )