By Topic

Fixed-Rate Maximum-Runlength-Limited Codes From Variable-Rate Bit Stuffing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sankarasubramaniam, Y. ; Hewlett-Packard Labs., Bangalore ; McLaughlin, S.W.

We introduce the fixed-rate bit stuff (FRB) algorithm for efficiently encoding and decoding maximum-runlength-limited (MRL) sequences. Our approach is based on a simple, variable-rate technique called bit stuffing. Bit stuffing produces near-capacity achieving codes for a wide range of constraints, but encoding is variable-rate, which is unacceptable in most applications. In this work, we design near-capacity fixed-rate codes using a three-step procedure. The fixed-length input data block first undergoes iterative preprocessing, followed by variable-rate bit stuffing, and finally dummy-bit padding to a fixed output length. The iterative preprocessing is key to achieving high encoding rates. We discuss rate computation for the proposed FRB algorithm and show that the asymptotic (in input block length) encoding rate is close to the average rate of the variable-rate bit stuff code. Then, we proceed to explore the effect of decreasing/increasing the number of preprocessing iterations. Finally, we derive a lower bound on the encoding rate with finite-length input blocks and tabulate the parameters required to design FRB codes with rate close to 100/101 and 200/201.

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 8 )