Cart (Loading....) | Create Account
Close category search window
 

The Maximum Entropy Principle in the Absence of a Time-Arrow: Fractional-Pole Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Georgiou, T.T. ; Univ. of Minnesota, Minneapolis

The maximum entropy (ME) principle, as it is often invoked in the context of time-series analysis, suggests the selection of a power spectrum which is consistent with autocorrelation data and corresponds to a random process least predictable from past observations. We introduce and compare a class of spectra with the property that the underlying random process is least predictable at any given point from the complete set of past and future observations. In this context, randomness is quantified by the size of the corresponding smoothing error and deterministic processes are characterized by integrability of the inverse of their power spectral densities - as opposed to the log-integrability in the classical setting. The power spectrum which is consistent with a partial autocorrelation sequence and corresponds to the most random (MR) process in this new sense, is no longer rational but generated by finitely many fractional-poles.

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 8 )

Date of Publication:

Aug. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.