By Topic

Ternary Schedules for Energy-Limited Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Medium access control for multihop wireless sensor networks (WSNs) must be energy efficient because the battery-operated nodes are not practical to recharge. We give constructions for ternary schedules in which each node is in one of three states: transmitting, receiving, or asleep. For each hop (vi, vj), communication is effective only when vi is transmitting, vj is receiving, and no other node in proximity of vj is also transmitting. Since sensor nodes are prone to failure, the schedules should be independent of the detailed topology while supporting spatial reuse. We use arc-decompositions of the complete lambda-fold directed graph Koarrn into directed complete bipartite subgraphs Koarra,b as a model for ternary scheduling in WSNs. We associate the vertices of Koarrn with the nodes of the WSN, and occurrences of Koarra,bs (blocks) in the decomposition with time slots in the schedule. A block with out-vertices A and in-vertices B corresponds to a slot in which the a nodes in A are transmitting, the b in B are receiving, and all others are asleep. Such a decomposition of lambdaKoarrnguarantees that every ordered pair of nodes in the WSN can communicate in lambda time slots.

Published in:

IEEE Transactions on Information Theory  (Volume:53 ,  Issue: 8 )