Cart (Loading....) | Create Account
Close category search window
 

A Support Vector Domain Description Approach to Supervised Classification of Remote Sensing Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Munoz-Mari, J. ; Universitat de Valencia, Valencia ; Bruzzone, L. ; Camps-Valls, G.

This paper addresses the problem of supervised classification of remote sensing images in the presence of incomplete (nonexhaustive) training sets. The problem is analyzed according to two different perspectives: 1) description and recognition of a specific land-cover class by using single-class classifiers and 2) solution of multiclass problems with single-class classification techniques. In this framework, we analyze different one-class classifiers and introduce in the remote sensing community the support vector domain description method (SVDD). The SVDD is a kernel-based method that exhibits intrinsic regularization ability and robustness versus low numbers of high-dimensional samples. The SVDD technique is compared with other standard single-class methods both in problems focused on the recognition of a single specific land-cover class and in multiclass problems. For the latter, we properly define an easily scalable multiclass architecture capable to deal with incomplete training data. Experimental results, obtained on different kinds of data (synthetic, hyperspectral, and multisensor images), point out the effectiveness of the SVDD technique and provide important indications for driving the choice of the classification technique and architecture in the presence of incomplete training data.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 8 )

Date of Publication:

Aug. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.