By Topic

Thin-Pavement Thickness Estimation Using GPR With High-Resolution and Superresolution Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In the field of civil engineering, sounding the top layer of carriageways, i.e., the pavement layer, is classically performed using standard ground-penetrating radar (GPR), whose resolution is bandwidth dependent. The layer thickness is deduced from both the time delays of backscattered echoes and the known dielectric constant of the medium. This paper focuses on superresolution and high-resolution techniques, which serve to improve the time resolution of GPR signals, and presents a parametric technique and five subspace methods, namely, estimation of signal parameters via rotational invariance techniques (ESPRIT), multiple-signal classification (MUSIC) algorithm, Min-Norm, and their polynomial versions root-MUSIC and root-Min-Norm. The performance of these algorithms will be compared in terms of resolution power as well as root-mean-square error on the estimated thickness. The paper also presents the results of computer tests and radar measurements in the far field.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 8 )