Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Demonstration and Performance Assessment of Large Format InP–InGaAsP Quantum-Well Infrared Photodetector Focal Plane Array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ozer, S. ; Middle East Tech. Univ., Ankara ; Tumkaya, U. ; Asici, B. ; Besikci, C.

There have been various studies showing that InP-InGaAs quantum-well infrared photodetectors (QWIPs) are potential alternatives to AlGaAs-GaAs QWIPs in the long wavelength infrared (LWIR) band, especially for applications requiring high responsivity. Being on InP substrate, this material system also offers lattice matched mid-wavelength infrared (MWIR)/LWIR dual band QWIP stack when it is used with the AlInAs-InGaAs system. It is desirable to extend the cut-off wavelength of InP based LWIR QWIPs to , which can be accomplished by replacing the QW material with InGaAsP. In this paper, we report the first InP-InGaAsP QWIP focal plane array (FPA). The 640 512 FPA displayed remarkably low noise equivalent temperature difference (NETD) with very short integration times (46 mK at 66 K with and f/1.5 optics). The results show that these QWIPs can be operated with high responsivity (1 A/W) while offering bias adjustable gain in a wide range where the detectivity is almost constant at a reasonably high level.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:43 ,  Issue: 8 )