By Topic

Bulk-Micromachined Test Structure for Fast and Reliable Determination of the Lateral Thermal Conductivity of Thin Films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

A novel bulk-micromachined test structure is presented for the fast and reliable determination of the lateral thermal conductivity of thin films. The device is composed of a heater resistor and thermocouples that are fabricated in polysilicon (poly-Si), and the associated processing and DC measurement procedures are straightforward. The validity of the method is supported by numerical simulations and verified by experimental determination of the lateral thermal conductivity of aluminum (Al), aluminum nitride (AlN), p-doped poly-Si, and silicon nitride (SiN) thin films. For Al, an average value of 217 W m-1 K-1 was found for 1-mum thick layers. For the other layers, a number of thicknesses were studied, and the increase of thermal conductivity with thickness was effectively detected: for AlN, values from 7 to 11.5 W m-1 K-1 were found, and for p-doped poly-Si, values went from 21 to 46 W m-1 K-1 for thicknesses from 0.15 to 1 mum. For SiN, a value of 1.8 was extracted for layers thicker than 0.5 mum.

Published in:

Microelectromechanical Systems, Journal of  (Volume:16 ,  Issue: 3 )