Cart (Loading....) | Create Account
Close category search window

Microrelays With Bidirectional Electrothermal Electromagnetic Actuators and Liquid Metal Wetted Contacts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cao, A. ; KLA-Tencor Corp., San Jose ; Yuen, P. ; Liwei Lin

Microrelays with liquid metal wetted contacts have been demonstrated using bidirectional electrothermal electromagnetic actuators. These relays were fabricated with the Metal MUMPs foundry process, which has a 20-mum-thick nickel structural layer. The operating voltage is under 0.5 V. The measured breakdown voltage and off-state resistance are greater than 200 V and 100 MOmega, respectively, and the gold-to-gold contact resistance is around 0.3 Omega. When the contacts are wetted with liquid gallium alloy (melting point at -20degC), the measured contact resistance can be as low as 0.015 Omega. As such, these bidirectional relays could have potential applications in high-power switching systems with low contact resistance using liquid metal wetted contacts.

Published in:

Microelectromechanical Systems, Journal of  (Volume:16 ,  Issue: 3 )

Date of Publication:

June 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.