By Topic

Discrimination Power of Vocal Source and Vocal Tract Related Features for Speaker Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wai Nang Chan ; Chinese Univ. of Hong Kong, Hong Kong ; Nengheng Zheng ; Tan Lee

This paper presents an analysis of the speaker discrimination power of vocal source related features, in comparison to the conventional vocal tract related features. The vocal source features, named wavelet octave coefficients of residues (WOCOR), are extracted by pitch-synchronous wavelet transform of the linear predictive (LP) residual signals. Using a series of controlled experiments, it is shown that WOCOR is less sensitive to spoken content than the conventional MFCC features and thus more discriminative when the amount of training data is limited. These advantages of WOCOR are exploited in the task of speaker segmentation for telephone conversation, in which statistical speaker models need to be built upon short speech segments. Experimental results show that the proposed use of WOCOR leads to noticeable reduction of segmentation errors.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:15 ,  Issue: 6 )