By Topic

Impact of request dispatching granularity in geographically distributed Web systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Andreolini, M. ; Univ. of Modena & Reggio Emilia, Modena ; Canali, C. ; Lancellotti, R.

The advent of the mobile Web and the increasing demand for personalized contents arise the need for computationally expensive services, such as dynamic generation and on-the- fly adaptation of contents. Providing these services exacerbates the performance issues that have to be addressed by the underlying Web architecture. When performance issues are addressed through geographically distributed Web systems with a large number of nodes located on the network edge, the dispatching mechanism that distributes requests among the system nodes becomes a critical element. In this paper, we investigate how the granularity of re- quest dispatching may affect the performance of a distributed Web system for personalized contents. Through a real prototype, we compare dispatching mechanisms operating at various levels of granularity for different workload and network scenarios. We demonstrate that the choice of the best granularity for request dispatching strongly depends on the characteristics of the workload in terms of heterogeneity and computational requirements. A coarse- grain dispatching is preferable only when the requests have similar computational requirements. In all other instances of skewed workloads, that we can consider more realistic, a fine-grain dispatching augments the control on the node load and allows the system to achieve better performance.

Published in:

Network Computing and Applications, 2007. NCA 2007. Sixth IEEE International Symposium on

Date of Conference:

12-14 July 2007