By Topic

Visual Tools for Analysing Evolution, Emergence, and Error in Data Streams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sol Hart ; University of Ballarat, Australia ; John Yearwood ; Adil M. Bagirov

The relatively new field of stream mining has necessitated the development of robust drift-aware algorithms that provide accurate, real time, data handling capabilities. Tools are needed to assess and diagnose important trends and investigate drift evolution parameters. In this paper, we present two new and novel visualisation techniques, Pixie and Luna graphs, which incorporate salient group statistics coupled with intuitive visual representations of multidimensional groupings over time. Through the novel representations presented here, spatial interactions between temporal divisions can be diagnosed and overall distribution patterns identified. It provides a means of evaluating in non-constrained capacity, commonly constrained evolutionary problems.

Published in:

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)

Date of Conference:

11-13 July 2007