Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Dynamic Feature Selection for Spam Filtering Using Support Vector Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Islam, M.R. ; Deakin Univ., Melbourne ; Wanlei Zhou ; Choudhury, M.U.

Spam is commonly defined as unsolicited email messages and the goal of spam filtering is to differentiate spam from legitimate email. Much work have been done to filter spam from legitimate emails using machine learning algorithm and substantial performance has been achieved with some amount of false positive (FP) tradeoffs. In this paper, architecture of spam filtering has been proposed based on support vector machine (SVM,) which will get better accuracy by reducing FP problems. In this architecture an innovative technique for feature selection called dynamic feature selection (DFS) has been proposed which is enhanced the overall performance of the architecture with reduction of FP problems. The experimental result shows that the proposed technique gives better performance compare to similar existing techniques.

Published in:

Computer and Information Science, 2007. ICIS 2007. 6th IEEE/ACIS International Conference on

Date of Conference:

11-13 July 2007