By Topic

Hybrid Genetic Algorithm for Solving Job-Shop Scheduling Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. M. Kamrul Hasan ; Student Member, IEEE; University of New South Wales, Australia ; Ruhul Sarker ; David Cornforth

The job-shop scheduling problem (JSSP) is a well-known difficult combinatorial optimization problem. Many algorithms have been proposed for solving JSSP in the last few decades, including algorithms based on evolutionary techniques. However, there is room for improvement in solving medium to large scale problems effectively. In this paper, we present a hybrid genetic algorithm (HGA) that includes a heuristic job ordering with a genetic algorithm. We apply HGA to a number of benchmark problems. It is found that the algorithm is able to improve the solution obtained by traditional genetic algorithm.

Published in:

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)

Date of Conference:

11-13 July 2007