Cart (Loading....) | Create Account
Close category search window
 

Arthrodial Joint Markerless Cross-Parameterization and Biomechanical Visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Marai, G.E. ; Brown Univ., Providence ; Grimm, C.M. ; Laidlaw, D.H.

Orthopedists invest significant amounts of effort and time trying to understand the biomechanics of arthrodial (gliding) joints. Although new image acquisition and processing methods currently generate richer-than-ever geometry and kinematic data sets that are individual specific, the computational and visualization tools needed to enable the comparative analysis and exploration of these data sets lag behind. In this paper, we present a framework that enables the cross-data-set visual exploration and analysis of arthrodial joint biomechanics. Central to our approach is a computer-vision-inspired markerless method for establishing pairwise correspondences between individual-specific geometry. Manifold models are subsequently defined and deformed from one individual-specific geometry to another such that the markerless correspondences are preserved while minimizing model distortion. The resulting mutually consistent parameterization and visualization allow the users to explore the similarities and differences between two data sets and to define meaningful quantitative measures. We present two applications of this framework to human-wrist data: articular cartilage transfer from cadaver data to in vivo data and cross-data-set kinematics analysis. The method allows our users to combine complementary geometries acquired through different modalities and thus overcome current imaging limitations. The results demonstrate that the technique is useful in the study of normal and injured anatomy and kinematics of arthrodial joints. In principle, the pairwise cross-parameterization method applies to all spherical topology data from the same class and should be particularly beneficial in instances where identifying salient object features is a nontrivial task.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:13 ,  Issue: 5 )

Date of Publication:

Sept.-Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.