By Topic

A Multi-Level Cache Model for Run-Time Optimization of Remote Visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sisneros, R. ; Univ. of Tennessee, Knoxville ; Jones, C. ; Huang, J. ; Gao, J.
more authors

Remote visualization is an enabling technology aiming to resolve the barrier of physical distance. Although many researchers have developed innovative algorithms for remote visualization, previous work has focused little on systematically investigating optimal configurations of remote visualization architectures. In this paper, we study caching and prefetching, an important aspect of such architecture design, in order to optimize the fetch time in a remote visualization system. Unlike a processor cache or Web cache, caching for remote visualization is unique and complex. Through actual experimentation and numerical simulation, we have discovered ways to systematically evaluate and search for optimal configurations of remote visualization caches under various scenarios, such as different network speeds, sizes of data for user requests, prefetch schemes, cache depletion schemes, etc. We have also designed a practical infrastructure software to adaptively optimize the caching architecture of general remote visualization systems, when a different application is started or the network condition varies. The lower bound of achievable latency discovered with our approach can aid the design of remote visualization algorithms and the selection of suitable network layouts for a remote visualization system.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:13 ,  Issue: 5 )