By Topic

√3-Subdivision-Based Biorthogonal Wavelets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huawei Wang ; Tsinghua Univ., Beijing ; Kaihuai Qin ; Hanqiu Sun

A new efficient biorthogonal wavelet analysis based on the radic3 subdivision is proposed in the paper by using the lifting scheme. Since the radic3 subdivision is of the slowest topological refinement among the traditional triangular subdivisions, the multiresolution analysis based on the radic3 subdivision is more balanced than the existing wavelet analyses on triangular meshes and accordingly offers more levels of detail for processing polygonal models. In order to optimize the multiresolution analysis, the new wavelets, no matter whether they are interior or on boundaries, are orthogonalized with the local scaling functions based on a discrete inner product with subdivision masks. Because the wavelet analysis and synthesis algorithms are actually composed of a series of local lifting operations, they can be performed in linear time. The experiments demonstrate the efficiency and stability of the wavelet analysis for both closed and open triangular meshes with radic3 subdivision connectivity. The radic3-subdivision-based biorthogonal wavelets can be used in many applications such as progressive transmission, shape approximation, and multiresolution editing and rendering of 3D geometric models.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:13 ,  Issue: 5 )