By Topic

A Computational Algebraic Geometry Based Global Optimization Technique to Address Economic Dispatch

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kavasseri, R.G. ; Dept. of Electr. & Comput. Eng., North Dakota State Univ., Fargo, ND ; Nag, P.

In algebraic geometry, the concept of Grobner basis allows a systematic study of the solution of a system of polynomial equations. This concept can be applied to find the global (and all local optima) optimum of a nonlinear, not necessarily convex function, the only restriction being that the objective function be polynomial. The method is based on computing a lexicographic (lex) ordered Grobner basis for the ideal generated by the first order necessary conditions defined by the Lagrangian. Computing the optimal solution is then equivalent to computing the variety corresponding to this ideal. By virtue of the (lex) ordering, the system is transformed in to set of polynomials which can be solved successively to obtain the solutions. Here, we illustrate the application of the method on a non-convex function and identify the global optimum from the set of fifteen stationary points (6 local minima, 2 local maxima and 7 saddles). Then we apply the method to solve the classical economic dispatch problem including a combined cycle heat plant (CCHP) whose piecewise linear cost function is approximated by a smooth tenth order polynomial. Interestingly, the the method yields two possible solutions from which the least cost solution can be picked. While the work reported here is only preliminary, we find the results encouraging and hope that the method will find applicability in identifying the global optimum of non-convex power systems optimization problems.

Published in:

Power Engineering Society General Meeting, 2007. IEEE

Date of Conference:

24-28 June 2007