By Topic

Enabling Real-Time Querying of Live and Historical Stream Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Frederick Reiss ; Lawrence Berkeley National Laboratory, USA; University of California, Berkeley, USA; IBM Almaden Research Center, USA ; Kurt Stockinger ; Kesheng Wu ; Arie Shoshani
more authors

Applications that query data streams in order to identify trends, patterns, or anomalies can often benefit from comparing the live stream data with archived historical stream data. However, searching this historical data in real time has been considered so far to be prohibitively expensive. One of the main bottlenecks is the update costs of the indices over the archived data. In this paper, we address this problem by using our highly-efficient bitmap indexing technology (called FastBit) and demonstrate that the index update operations are sufficiently efficient for this bottleneck to be removed. We describe our prototype system based on the TelegraphCQ streaming query processor and the FastBit bitmap index. We present a detailed performance evaluation of our system using a complex query workload for analyzing real network traffic data. The combined system uses TelegraphCQ to analyze streams of traffic information and FastBit to correlate current behaviors with historical trends. We demonstrate that our system can simultaneously analyze (1) live streams with high data rates and (2) a large repository of historical stream data.

Published in:

Scientific and Statistical Database Management, 2007. SSBDM '07. 19th International Conference on

Date of Conference:

9-11 July 2007