By Topic

Boosting k-Nearest Neighbor Queries Estimating Suitable Query Radii

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper proposes novel and effective techniques to estimate a radius to answer k-nearest neighbor queries. The first technique targets datasets where it is possible to learn the distribution about the pairwise distances between the elements, generating a global estimation that applies to the whole dataset. The second technique targets datasets where the first technique cannot be employed, generating estimations that depend on where the query center is located. The proposed k-NNF() algorithm combines both techniques, achieving remarkable speedups. Experiments performed on both real and synthetic datasets have shown that the proposed algorithm can accelerate k-NN queries more than 26 times compared with the incremental algorithm and spends half of the total time compared with the traditional k-NN() algorithms.

Published in:

Scientific and Statistical Database Management, 2007. SSBDM '07. 19th International Conference on

Date of Conference:

9-11 July 2007