By Topic

A simple mechanical system for studying adaptive oscillatory neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guillaume Jouffroy ; Artificial Intelligence Laboratory, University of Paris VIII, 93526 Saint-Denis Cedex, France, e-mail: gj@ai.univ-paris8.fr ; Jerome Jouffroy

Central pattern generators (CPG) are oscillatory systems that are responsible for generating rhythmic patterns at the origin of many biological activities such as for example locomotion or digestion. These systems are generally modelled as recurrent neural networks whose parameters are tuned so that the network oscillates in a suitable way, this tuning being a non trivial task. It also appears that the link with the physical body that these oscillatory entities control has a fundamental importance, and it seems that most bodies used for experimental validation in the literature (walking robots, lamprey model, etc.) might be too complex to study. In this paper, we use a comparatively simple mechanical system, the nonholonomic vehicle referred to as the Roller-Racer, as a means towards testing different learning strategies for an recurrent neural network-based (RNN) controller/guidance system. After a brief description of the Roller-Racer, we present as a preliminary study an RNN-based feed-forward controller whose parameters are obtained through the well-known teacher forcing learning algorithm, extended to learn signals with a continuous component.

Published in:

2006 IEEE International Conference on Systems, Man and Cybernetics  (Volume:3 )

Date of Conference:

8-11 Oct. 2006